Species Identification in Malaise Trap Samples by DNA Barcoding Based on NGS Technologies and a Scoring Matrix.
نویسندگان
چکیده
The German Barcoding initiatives BFB and GBOL have generated a reference library of more than 16,000 metazoan species, which is now ready for applications concerning next generation molecular biodiversity assessments. To streamline the barcoding process, we have developed a meta-barcoding pipeline: We pre-sorted a single malaise trap sample (obtained during one week in August 2014, southern Germany) into 12 arthropod orders and extracted DNA from pooled individuals of each order separately, in order to facilitate DNA extraction and avoid time consuming single specimen selection. Aliquots of each ordinal-level DNA extract were combined to roughly simulate a DNA extract from a non-sorted malaise sample. Each DNA extract was amplified using four primer sets targeting the CO1-5' fragment. The resulting PCR products (150-400bp) were sequenced separately on an Illumina Mi-SEQ platform, resulting in 1.5 million sequences and 5,500 clusters (coverage ≥10; CD-HIT-EST, 98%). Using a total of 120,000 DNA barcodes of identified, Central European Hymenoptera, Coleoptera, Diptera, and Lepidoptera downloaded from BOLD we established a reference sequence database for a local CUSTOM BLAST. This allowed us to identify 529 Barcode Index Numbers (BINs) from our sequence clusters derived from pooled Malaise trap samples. We introduce a scoring matrix based on the sequence match percentages of each amplicon in order to gain plausibility for each detected BIN, leading to 390 high score BINs in the sorted samples; whereas 268 of these high score BINs (69%) could be identified in the combined sample. The results indicate that a time consuming presorting process will yield approximately 30% more high score BINs compared to the non-sorted sample in our case. These promising results indicate that a fast, efficient and reliable analysis of next generation data from malaise trap samples can be achieved using this pipeline.
منابع مشابه
Species identification reveals mislabeling of important fish products in Iran by DNA barcoding
This study reports on the molecular identification of fish species from processed products which had a priori been classified as belonging to 5 important species in Iran for human consumption. DNA barcoding using direct sequencing of an approximately 650bp of mitochondrial Cytochrome oxidase subunit I (COI) gene revealed incorrect labeling of Narrow-barred Spanish mackerel samples. High occurre...
متن کاملSpecies identification reveals mislabeling of important fish products in Iran by DNA barcoding
This study reports on the molecular identification of fish species from processed products which had a priori been classified as belonging to 5 important species in Iran for human consumption. DNA barcoding using direct sequencing of an approximately 650bp of mitochondrial Cytochrome oxidase subunit I (COI) gene revealed incorrect labeling of Narrow-barred Spanish mackerel samples. High occurre...
متن کاملDNA Barcoding: a new tool with wide array of applications
DNA barcoding is a new term introduced in to scientific literatures by Hebert and coworkers almost a decade ago. The concept of barcoding alone is well-known to the public: a series of black bars printed on many commercial products (Universal Product Code), which are used to distinguish different products. Advances made in molecular biology and molecular techniques late 20th century e.g. sequen...
متن کاملMolecular investigation and DNA Barcoding of Platycephalus indicus from the Persian Gulf
This study aimed to use mitochondrial DNA barcoding method to undrestand better toxanomic status of the Platycephalus indus and find genetic linkage with other reported specimens from different parts of the world as well as to manage the optimal utilization of native species and sustainable conservation. Sampling was performed from coastal waters of Hormozgan province. DNA was extracted from th...
متن کاملAppraisal of the entire mitochondrial genome for DNA barcoding in birds
DNA barcoding based on a standardized region of 648 base pairs of mitochondrial DNAsequences from Cytochrome C Oxidase 1 (COX1) is proposed for animal species identification.Recent studies suggested that DNA barcoding has been effective for identifying 94% of birdspecies. The proposed threshold of 10 times the average intraspecific variation could be used forthe identification and delimitation ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- PloS one
دوره 11 5 شماره
صفحات -
تاریخ انتشار 2016